Answer:
[tex]\sqrt{178}[/tex] units
Step-by-step explanation:
Use the distance formula [tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex] where [tex]d[/tex] is the positive distance between [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]:
[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
[tex]d=\sqrt{(-8-(-5))^2+(7-(-6))^2}[/tex]
[tex]d=\sqrt{(-8+5)^2+(7+6)^2}[/tex]
[tex]d=\sqrt{(-3)^2+(13)^2}[/tex]
[tex]d=\sqrt{9+169}[/tex]
[tex]d=\sqrt{178}[/tex]
Therefore, the distance between [tex](-6,-5)[/tex] and [tex](7,-8)[/tex] is [tex]\sqrt{178}[/tex] units.