Ben
contestada

Verify the following identity:

[tex]\dfrac{1-\sin t}{\cos^2t}+\dfrac{1}{1-\sin t}=2\sec^2t[/tex]

Respuesta :

We will simplify the left hand side of the equation to look like the right

[tex]\displaystyle \frac{1-sin(t)}{cos^{2}(t)} + \frac{1}{1 - sin(t)}[/tex]

taking the LCM

[tex]\displaystyle \frac{[1-sin(t)]^{2} + cos^{2}(t)}{[cos^{2}(t)][1 - sin(t)]}[/tex]

expanding the binomial in the numerator

[tex]\displaystyle \frac{[1 + sin^{2}(t) - 2sin(t) + cos^{2}(t)]}{[cos^{2}(t)][1 - sin(t)]}[/tex]

Since sin²x + cos²x = 1

[tex]\displaystyle \frac{[2 - 2sin(t)]}{[cos^{2}(t)][1 - sin(t)]}[/tex]

factoring out the 2 from the numerator

[tex]\displaystyle \frac{2[1 - sin(t)]}{[cos^{2}(t)][1 - sin(t)]}[/tex]

1-sin(t) will cancel out

[tex]\displaystyle \frac{2}{cos^{2}(t)}[/tex]

since cos²(t) = 1/(sec²(t))

[tex]2 sec^{2}(t)[/tex]

which is equal to the right hand side of our given equation.

So we verified the identity!

Answer:

[tex]\rm 2 \sec {}^{2} T[/tex](Verified identity)

Step-by-step explanation:

Please refer to the attachment for calculations.

I hope this helps!

Ver imagen MisterBrian