It looks like we have
[tex]g(x) = x^2 e^{kx}[/tex]
If x = 23 is a critical point of g(x), then
[tex]g'(x) = 2x e^{kx} + kx^2 e^{kx} = (kx^2 + 2x) e^{kx}[/tex]
[tex]\implies g'(23) = (23^2k + 46) e^{23k} = 0[/tex]
[tex]e^{23k}[/tex] is positive for all k, so we're left with
23² k + 46 = 0
23² k = -46
k = -46/23²
k = -2/23