The map shows two biking trails that meet at a park, located at the coordinate (1, 9). Each unit on the map represents 0.5 mile.How many miles longer is Trail A than Trail B?

The map shows two biking trails that meet at a park located at the coordinate 1 9 Each unit on the map represents 05 mileHow many miles longer is Trail A than T class=

Respuesta :

The length of the trails can be determined be using a formula related to

Pythagorean theorem, which makes use of the rise and run of a trail.

  • The number of miles longer Trail A is than Trail B is 4 miles

Reasons:

The location of the park = (1, 9)

The stating point of Trail A = (-7, -6)

Starting point of Trail B = (6, -3)

The length of a trail is adapted from the formula for the distance between points which is a form of Pythagorean theorem as follows;

[tex]Length \ of \ a \ trail, \ L = \mathbf{\sqrt{\left (x_{2}-x_{1} \right )^{2}+\left (y_{2}-y_{1} \right )^{2}}}[/tex]

Therefore;

[tex]Length \ of \ trail, \ A = \sqrt{\left (1-(-7) \right )^{2}+\left (9-(-6) \right )^{2}} = \mathbf{17}[/tex]

[tex]Length \ of \ trail, \ B = \sqrt{\left (1-6 \right )^{2}+\left (9-(-3) \right )^{2}} = \mathbf{13}[/tex]

The difference between the lengths of the trails = 17 mi - 13 mi = 4 miles

Therefore;

Trail A is 4 miles longer than Trail B

Learn more about finding the distance between two points on a graph here:

https://brainly.com/question/9917504