What is the simplified form of the following expression? Assume x not-equals 0. RootIndex 5 StartRoot StartFraction 10 x Over 3 x cubed EndFraction EndRoot StartFraction RootIndex 5 StartRoot 10 x EndRoot Over 3 x EndFraction StartFraction RootIndex 5 StartRoot 30 EndRoot Over 3 x EndFraction StartFraction RootIndex 5 StartRoot 120 x cubed EndRoot Over 3 x EndFraction StartFraction RootIndex 5 StartRoot 810 x cubed EndRoot Over 3 x EndFraction.

Respuesta :

Equivalent expressions are expressions of different forms that have the same value

The equivalent simplified expression of [tex]\sqrt[5]{\frac{10x}{3x^3}}[/tex] is [tex]\sqrt[5]{\frac{810x^3}{243x^5}}[/tex]

The equation is given as:

[tex]\sqrt[5]{\frac{10x}{3x^3}}[/tex]

Multiply the fraction by 810x^2.

So, we have:

[tex]\sqrt[5]{\frac{10x}{3x^3}} =\sqrt[5]{\frac{10x \times 81x^2}{3x^3\times 81x^2}}[/tex]

Evaluate the products

[tex]\sqrt[5]{\frac{10x}{3x^3}} =\sqrt[5]{\frac{810x^3}{243x^5}}[/tex]

Hence, the equivalent simplified expression of [tex]\sqrt[5]{\frac{10x}{3x^3}}[/tex] is [tex]\sqrt[5]{\frac{810x^3}{243x^5}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/9603710

Answer:

d

Step-by-step explanation: