Respuesta :

The center of the circle that circumscribe about DABC is [tex](h,k) = (1, 5)[/tex].

A circle can be modelled after a expression of the form:

[tex]A\cdot x + B\cdot y + C =-x^{2}-y^{2}[/tex] (1)

We can determine all coefficients by knowing three distinct points on plane.

If we know that [tex](x_{1}, y_{1}) = (2, 8)[/tex], [tex](x_{2}, y_{2}) = (0, 8)[/tex] and [tex](x_{3}, y_{3}) = (2, 2)[/tex], then the solution of the system of linear equations is:

[tex]2\cdot A + 8\cdot B + C = -68[/tex] (2)

[tex]8\cdot B + C = -64[/tex] (3)

[tex]2\cdot A + 2\cdot B + C = -8[/tex] (4)

[tex]A = -2, B = -10, C = 16[/tex]

Now we proceed to complete squares and factor each resulting perfect square trinomial in order to determine the coordinates of the center of the circle:

[tex]x^{2}+y^{2}-2\cdot x -10\cdot y +16 = 0[/tex]

[tex](x^{2}-2\cdot x +1)-1+(y^{2}-10\cdot y +25)-25 +16 = 0[/tex]

[tex](x-1)^{2}+(y-5)^{2}= 10[/tex]

The center of the circle that circumscribe about DABC is [tex](h,k) = (1, 5)[/tex].

To learn more on circles, we kindly invite to check this verified question: https://brainly.com/question/11833983