Respuesta :

Answer:

Option D:  [tex]\displaystyle\mathsf{-\frac{4}{5}\:\leq\:x}[/tex]

Step-by-step explanation:

GIven the following inequality statement:

[tex]\displaystyle\mathsf{7x\:+\:6\:\geq \:\frac{-x}{2}}[/tex]

Start by eliminating the fraction on the right-hand side.

Multiply both sides of the inequality statement by 2:

[tex]\displaystyle\mathsf{2(7x\:+\:6)\:\geq \:\bigg[\frac{-x}{2}\bigg](2)}[/tex]

2(7x + 6) ≥ -x

Next, distribute 2 into the terms inside the parenthesis:

14x + 12 ≥ -x

Subtract 12 from both sides:

14x + 12 - 12 ≥ -x - 12

14x  ≥ -x - 12

Add x to both sides:

14x + x  ≥ -x + x - 12

15x ≥ - 12

Divide both sides by 15 to isolate x:

[tex]\displaystyle\mathsf{\frac{15x}{15}\:=\:\frac{-12}{15}}[/tex]

[tex]\displaystyle\mathsf{x\geq -\frac{4}{5}}[/tex] or  [tex]\displaystyle\mathsf{-\frac{4}{5}\:\leq\:x}[/tex]

Therefore, the correct answer is Option D:  [tex]\displaystyle\mathsf{-\frac{4}{5}\:\leq\:x}[/tex]