Solve for r.
√2/3r + 1 = 23

Answer:
2nd option
Step-by-step explanation:
[tex]\frac{\sqrt{2} }{3}[/tex] r + 1 = 23 ( subtract 1 from both sides )
[tex]\frac{\sqrt{2} }{3}[/tex] r = 22 ( multiply both sides by 3 to clear the fraction )
[tex]\sqrt{2}[/tex] r = 66 ( divide both sides by [tex]\sqrt{2}[/tex] )
r = [tex]\frac{66}{\sqrt{2} }[/tex] × [tex]\frac{\sqrt{2} }{\sqrt{2} }[/tex] ( rationalising the denominator )
r = [tex]\frac{66\sqrt{2} }{2}[/tex] = 33[tex]\sqrt{2}[/tex]
Answer:
B) r=33*sqrt(2)
Step-by-step explanation:
sqrt(2)/3r+1=23
sqrt(2)/3r=23-1
sqrt(2)/3r=22
sqrt(2)r=22*3
sqrt(2)r=66
r=66/sqrt(2)
r=66*sqrt(2)/(sqrt(2)*sqrt(2))
r=(66*sqrt(2)/2
r=33*sqrt(2)