Respuesta :

[tex]\huge \bf༆ Answer ༄[/tex]

Let's Solve for t ~

➢ [tex] \sf q = \dfrac{2 - 4t}{t + 3} \\[/tex]

➢ [tex] \sf{q(t + 3) =2 - 4t }\\[/tex]

➢ [tex] \sf{qt + 3q} = 2 - 4t\\[/tex]

➢ [tex] \sf{qt + 4t = 2 - 3q }\\[/tex]

➢ [tex] \sf{t(q + 4) = 2 - 3q}\\[/tex]

➢ [tex] \sf{t = \dfrac{2 - 3q}{q + 4} }[/tex]

Answer:

t = (2 - 3q)/(q + 4).

Step-by-step explanation:

We cross multiply:

q(t + 3) = 2 - 4t

qt + 3q = 2 - 4t

qt + 4t = 2 - 3q

t(q + 4) = 2 - 3q

t = (2 - 3q)/(q + 4).