Respuesta :

Answer:

the angles are 89.2°, 34.5°, 56.3° and the sides are √26units, √8units, √18units respectively

Step-by-step explanation:

Distance between points (2,5) and (-1,2)

Using the formula, √(X2 - X1)² + (Y2 - Y1)²

= √(-1-2)²+(2-5)²

=√(-3)²+(-3)²

=√9+9

=√18 or 3√2

Distance between points (-1,2) and (4,3)

=√[4-(-1)]²+(3-2)²

= √5²+1²

=√25+1

=√26

Distance between points (2,5) and (4,3)

=√(4-2)²+(3-5)²

=√2²+(-2)²

=√4+4

=√8

Using Cosine rule/formula, C²= A²+B²-2abcosc

Let C be √18, A be √26 and B be √8

√18²=√26²+√8² - 2√26.√8cosc

18= 26+8 - 2√208cosc

18= 34 -2√208cosc

2√208cosc= 34-18

Cosc = 16/2√208

Cosc= 0.5546

c= Cos`¹(0.5547)

c= 56.3°

Using sine rule/formula

Sinc/C= Sina/A=Sinb/B

Sin56.3/√18= Sina/√26

Sina= (0.8320 × √26)/ √18

Sina= 0.9999

a= Sin`¹(0.9999)

a= 89.2

56.3+89.2+b= 180°( sum of angles in a triangle)

145.5 + b =180

b=180-145.5

b= 34.5