Respuesta :

Answer:

[tex]\boxed{\sf All\: real\: numbers}[/tex]

Step-by-step explanation:

[tex]\star \:\sf Classify\: -4m+21\left(m-1\right)\le \:15m+2\left(m-1\right)\: \star[/tex]

Apply Distribution law:

[tex]\sf -4m+21m-21\le \:15m+2\left(m-1\right)[/tex]

Combine like terms:

** [tex]\sf \hookrightarrow -4m+21m=17m[/tex]

[tex]\longmapsto\sf 17m-21\le \:15m+2\left(m-1\right)[/tex]

[tex]\sf 2(m-1)[/tex]

[tex]\hookrightarrow 2m-2[/tex]

-----------------------------------------

[tex]\longmapsto\sf 17m-21\le \:15m+2m-2[/tex]

Combine like terms:

** [tex]\sf 15m+2m=17m[/tex]

[tex]\longmapsto\sf 17m-21\le \:17m-2[/tex]

Add 21 from both sides:

[tex]\longmapsto\sf 17m-21+21\le \:17m-2+21[/tex]

[tex]\longmapsto\sf 17m\le \:17m+19[/tex]

Subtract 17m from both sides:

[tex]\longmapsto\sf 17m-17m\le \:17m+19-17m[/tex]

[tex]\longmapsto\sf 0\le \:19[/tex]

Therefore, the solution of the inequality: All real numbers

_____________________________________________