Respuesta :
Answer:
The roots are {-6, -3}
Step-by-step explanation:
We are given four possible roots. To determine whether or not a particular possible root is actually a root, we use synthetic division. If the remainder is zero, we may conclude that this is actually a root.
Determine whether or not -3 is a root. Setting up synthetic division, we get
-3 / 2 18 36
-6 -36
---------------------
2 12 0
Since the remainder is zero, -3 is a root.
Try -6: Is this a root of 2x + 12? Setting up synthetic division, we get
-6 / 2 12
-12
----------------
2 0
The remainder is again zero, so -6 is also a root of the original equation.
The roots are {-6, -3}
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
The Correct choices are ~
b and d
[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
Let's solve ~
- [tex]2 {x}^{2} + 18 {x}^{} + 36 = 0[/tex]
- [tex]2 {x}^{2} + 12x + 6x + 36 = 0[/tex]
- [tex]2x(x + 6) + 6(x + 6) = 0[/tex]
- [tex](2x + 6)(x + 6) = 0[/tex]
There's two cases here,
Case # 1 - when 2x + 6 = 0
- [tex]2x + 6 = 0[/tex]
- [tex]2x = - 6[/tex]
- [tex]x = - 6 \div 2[/tex]
- [tex]x = - 3[/tex]
Case # 2 - when x + 6 = 0
- [tex]x + 6 = 0[/tex]
- [tex]x = - 6[/tex]
Hence, the roots are -3 and -6 ~