Respuesta :

Answer:

Solution

verified

Verified by Toppr

f,g:R→R is defined as

f(x)=x+1

g(x)=2x−3

Now, (f+g)(x)=f(x)+g(x)=(x+1)+(2x−3)=3x−2

∴(f+g)(x)=3x−2

Now, (f−g)(x)=f(x)−g(x)=(x+1)−(2x−3)=x+1−2x+3=−x+4

∴(f−g)(x)=−x+4

(

g

f

)(x)=

g(x)

f(x)

,g(x)

=0,x∈R

∴(

g

f

)(x)=

2x−3

x+1

,2x−3

=0 or 2x

=3

∴(

g

f

)(x)=

2x−3

x+1

,x

=

2

3