Respuesta :

Answer:

[tex]x=\frac{27+\sqrt143i}{8}{} ,\frac{27-\sqrt{143i} }{8}[/tex]

[tex]y=-9+\frac{27+\sqrt{143} i}{4} ,-9+\frac{27-\sqrt{143} i}{4}[/tex]

Step-by-step explanation:

1) Solve for 2x - y = 9

A. Solve for y.

2x - y = 9

B. Subtract 2x from both sides.

-y = 9 - 2x

C. Multiply both sides by -1.

y = -9 + 2x

D. Regroup terms.

y = 2x - 9

2) Substitute y = 2x- 9 into 4x² + 3y² - 2x + y = 16

A. Start with the original equation.

4x² + 3y² - 2x + y = 16

B. Let y = 2x - 9.

4x² + 3(2x - 9)² - 2x + 2x - 9 = 16

C. Simplify.

16x² - 108x + 234 = 16

3) Solve for x in 16x² - 108x + 234 = 16

A. Solve for x.

16x² - 108x + 234 -= 16

B. Move all terms to one side.

16x² - 108x + 234 - 16 = 0

C. Simplify 16x² - 108x + 234 - 16 to 16 x² - 108x + 218

16 x² - 108x + 218 = 0

D. Use the Quadratic Formula.

[tex]x=\frac{108+4\sqrt{143}i }{32}[/tex], [tex]\frac{108-4\sqrt{143} i}{32}[/tex]

E. Simplify solutions.

[tex]x=\frac{27+\sqrt{143} i}{8} ,\frac{27-\sqrt{143} i}{8}[/tex]

4) Substitute [tex]x=\frac{27+\sqrt{143}i }{8} ,\frac{27-\sqrt{143}i }{8}[/tex] into y = 2x - 9.

1) Start with the original equation.

y = 2x - 9

2) Let x = [tex]\frac{27+\sqrt{143} i}{8} ,\frac{27-\sqrt{143}i }{8} .[/tex]

[tex]y=2*\frac{27+\sqrt{143} i}{8} -9,2*\frac{27-\sqrt{143}i }{8} -9[/tex]

3) Simplify

[tex]y=-9+\frac{27+\sqrt{143}i }{4} ,-9+\frac{27-\sqrt{143i} }{4}[/tex]