Answer:
[tex]\mathrm{9.08 \times 10^6 \:km}[/tex]
Explanation:
To solve for the distance between the probe and the center of Venus, use the formula:
[tex]\mathrm{F = \frac{G\: m1 \:m2}{r^2}}[/tex]
Plugin the values:
G =
[tex]6.67\times10^{-11} \mathrm{\frac{m3}{kg\: s2}}[/tex]
[tex]\mathrm{F} =2.58 \times 10^3\mathrm{N}[/tex]
[tex]\mathrm{m1 = 4.87 \times 10^{24}\:kg}[/tex]
[tex]\mathrm{m2 = 655\: kg}[/tex]
Hence:
[tex]\mathrm{F = \frac{G\: m1 \:m2}{r^2}}[/tex]
[tex]2.58 \times 10^{23} = 6.67 \times 10^{-11} (4.87 \times 10^{24})[/tex]
[tex]\frac{(655)}{r^2}[/tex]
[tex]\mathrm{r = 9.08 \times 10^6 \:km}[/tex]