Find the dimensions of a rectangle (in m) with area 1,000 m2 whose perimeter is as small as possible. (Enter the dimensions as a comma separated list.)

Respuesta :

The perimeter of the rectangle is the sum of its dimensions

The dimensions that minimize the perimeter are [tex]\mathbf{10\sqrt{10 },10\sqrt{10 }}[/tex]

The area is given as:

[tex]\mathbf{A = 1000}[/tex]

Let the dimension be x and y.

So, we have:

[tex]\mathbf{A = xy = 1000}[/tex]

Make x the subject

[tex]\mathbf{x = \frac{1000}{y}}[/tex]

The perimeter is calculated as:

[tex]\mathbf{P = 2(x + y)}[/tex]

Substitute [tex]\mathbf{x = \frac{1000}{y}}[/tex]

[tex]\mathbf{P = 2(\frac{1000}{y} + y)}[/tex]

Expand

[tex]\mathbf{P = \frac{2000}{y} + 2y}[/tex]

Differentiate

[tex]\mathbf{P' = -\frac{2000}{y^2} + 2}[/tex]

Set to 0

[tex]\mathbf{ -\frac{2000}{y^2} + 2 = 0}[/tex]

Rewrite as:

[tex]\mathbf{ -\frac{2000}{y^2} = -2}[/tex]

Divide both sides by -1

[tex]\mathbf{\frac{2000}{y^2} = 2}[/tex]

Multiply y^2

[tex]\mathbf{2000 = 2y^2}[/tex]

Divide by 2

[tex]\mathbf{1000 = y^2}[/tex]

Take square roots of both sides

[tex]\mathbf{y = \sqrt{1000 }}[/tex]

[tex]\mathbf{y = 10\sqrt{10 }}[/tex]

Substitute [tex]\mathbf{y = \sqrt{1000 }}[/tex] in [tex]\mathbf{x = \frac{1000}{y}}[/tex]

[tex]\mathbf{x = \frac{1000}{\sqrt{1000}}}[/tex]

[tex]\mathbf{x = \sqrt{1000}}[/tex]

[tex]\mathbf{x = 10\sqrt{10 }}[/tex]

Hence, the dimensions that minimize the perimeter are [tex]\mathbf{10\sqrt{10 },10\sqrt{10 }}[/tex]

Read more about perimeters at:

https://brainly.com/question/6465134