Respuesta :
The perimeter of the rectangle is the sum of its dimensions
The dimensions that minimize the perimeter are [tex]\mathbf{10\sqrt{10 },10\sqrt{10 }}[/tex]
The area is given as:
[tex]\mathbf{A = 1000}[/tex]
Let the dimension be x and y.
So, we have:
[tex]\mathbf{A = xy = 1000}[/tex]
Make x the subject
[tex]\mathbf{x = \frac{1000}{y}}[/tex]
The perimeter is calculated as:
[tex]\mathbf{P = 2(x + y)}[/tex]
Substitute [tex]\mathbf{x = \frac{1000}{y}}[/tex]
[tex]\mathbf{P = 2(\frac{1000}{y} + y)}[/tex]
Expand
[tex]\mathbf{P = \frac{2000}{y} + 2y}[/tex]
Differentiate
[tex]\mathbf{P' = -\frac{2000}{y^2} + 2}[/tex]
Set to 0
[tex]\mathbf{ -\frac{2000}{y^2} + 2 = 0}[/tex]
Rewrite as:
[tex]\mathbf{ -\frac{2000}{y^2} = -2}[/tex]
Divide both sides by -1
[tex]\mathbf{\frac{2000}{y^2} = 2}[/tex]
Multiply y^2
[tex]\mathbf{2000 = 2y^2}[/tex]
Divide by 2
[tex]\mathbf{1000 = y^2}[/tex]
Take square roots of both sides
[tex]\mathbf{y = \sqrt{1000 }}[/tex]
[tex]\mathbf{y = 10\sqrt{10 }}[/tex]
Substitute [tex]\mathbf{y = \sqrt{1000 }}[/tex] in [tex]\mathbf{x = \frac{1000}{y}}[/tex]
[tex]\mathbf{x = \frac{1000}{\sqrt{1000}}}[/tex]
[tex]\mathbf{x = \sqrt{1000}}[/tex]
[tex]\mathbf{x = 10\sqrt{10 }}[/tex]
Hence, the dimensions that minimize the perimeter are [tex]\mathbf{10\sqrt{10 },10\sqrt{10 }}[/tex]
Read more about perimeters at:
https://brainly.com/question/6465134