[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
The given sequence is a geometric ~
let's find the common ratio (r) first ~
- [tex] \dfrac{48}{ - 96} [/tex]
- [tex] - \dfrac{1}{ 2} [/tex]
And the first term (a1) of the sequence is ~ -96
let's find the 5th and 6th term.
The value of 5th term is ~
- [tex]a_1{(r )}^{n - 1} [/tex]
- [tex] - 96{ \bigg( - \dfrac{1}{2} \bigg) }^{5 - 1} [/tex]
- [tex] - 96 { \bigg( - \dfrac{ 1}{2} \bigg) }^{4} [/tex]
- [tex] - 96 \times \dfrac{1}{16} [/tex]
The value of 6th term is ~
- [tex]a_1{(r )}^{n - 1} [/tex]
- [tex]- 96{ \bigg( - \dfrac{1}{2} \bigg) }^{6 - 1} [/tex]
- [tex]- 96{ \bigg( - \dfrac{1}{2} \bigg) }^{5 } [/tex]
- [tex] - 96 \times - \dfrac{1}{32} [/tex]