Respuesta :

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]

The given sequence is a geometric ~

let's find the common ratio (r) first ~

  • [tex] \dfrac{48}{ - 96} [/tex]

  • [tex] - \dfrac{1}{ 2} [/tex]

And the first term (a1) of the sequence is ~ -96

let's find the 5th and 6th term.

The value of 5th term is ~

  • [tex]a_1{(r )}^{n - 1} [/tex]

  • [tex] - 96{ \bigg( - \dfrac{1}{2} \bigg) }^{5 - 1} [/tex]

  • [tex] - 96 { \bigg( - \dfrac{ 1}{2} \bigg) }^{4} [/tex]

  • [tex] - 96 \times \dfrac{1}{16} [/tex]

  • [tex] - 6[/tex]

The value of 6th term is ~

  • [tex]a_1{(r )}^{n - 1} [/tex]

  • [tex]- 96{ \bigg( - \dfrac{1}{2} \bigg) }^{6 - 1} [/tex]

  • [tex]- 96{ \bigg( - \dfrac{1}{2} \bigg) }^{5 } [/tex]

  • [tex] - 96 \times - \dfrac{1}{32} [/tex]

  • [tex]3[/tex]