Respuesta :

The answer is a multiple of + 4 for each number resting

The [tex]nth[/tex] term rule of the quadratic sequence will be [tex]n^2+5n+2[/tex] .

What is quadratic sequence ?

Quadratic sequences are sequences that include  [tex]nth[/tex]  term. They can be identified by the fact that the differences between the terms are not equal, but the second differences between terms are equal.

Quadratic sequence [tex]=an^2+bn+c[/tex]

Here [tex]a,b,c[/tex] are constant and [tex]n[/tex] is the position of term.

First difference [tex]= 3a+b[/tex]

Second difference [tex]=2a[/tex]

We have,

Quadratic sequence [tex]8,16,26,38,52,68,86,....[/tex]

Quadratic sequence [tex]=an^2+bn+c[/tex]

so,

For [tex]n=1[/tex];

[tex]8=an^2+bn+c[/tex]

[tex]8=a+b+c[/tex]   [tex]........(i)[/tex]

For [tex]n=2[/tex];

[tex]16=4a+2b+c[/tex]    [tex]........(ii)[/tex]

For [tex]n=3[/tex];

[tex]26=9a+3b+c[/tex]    [tex]........(iii)[/tex]

Now,

Subtract equation [tex](i)[/tex] from [tex](ii)[/tex]

we get,

[tex]8=3a+b[/tex]    [tex]........(iv)[/tex]

Subtract equation [tex](ii)[/tex] from [tex](iii)[/tex] we get,

[tex]10=5a+b[/tex]    [tex]........(v)[/tex]

Subtract equation [tex](iv)[/tex] from [tex](v)[/tex] we get,

[tex]2=2a[/tex]  (This is second difference mentioned above)

[tex]a=1[/tex]

Putting [tex]a=1[/tex]  in [tex](iv)[/tex]

⇒[tex]b=5[/tex]

Now putting values of [tex]a[/tex] and [tex]b[/tex] in equation [tex](i)[/tex]

[tex]8=1+5+c[/tex]

[tex]c=2[/tex]

Now, putting values of [tex]a[/tex] , [tex]b[/tex] and [tex]c[/tex] in,

Quadratic sequence [tex]=an^2+bn+c[/tex]

we get,

[tex]nth[/tex] term rule [tex]=n^2+5n+2[/tex]

Hence, we can say that the [tex]nth[/tex] term rule of the quadratic sequence will be [tex]n^2+5n+2[/tex].

To know more about quadratic sequence click here

https://brainly.com/question/22412845

#SPJ3