Respuesta :
The [tex]nth[/tex] term rule of the quadratic sequence will be [tex]n^2+5n+2[/tex] .
What is quadratic sequence ?
Quadratic sequences are sequences that include [tex]nth[/tex] term. They can be identified by the fact that the differences between the terms are not equal, but the second differences between terms are equal.
Quadratic sequence [tex]=an^2+bn+c[/tex]
Here [tex]a,b,c[/tex] are constant and [tex]n[/tex] is the position of term.
First difference [tex]= 3a+b[/tex]
Second difference [tex]=2a[/tex]
We have,
Quadratic sequence [tex]8,16,26,38,52,68,86,....[/tex]
Quadratic sequence [tex]=an^2+bn+c[/tex]
so,
For [tex]n=1[/tex];
[tex]8=an^2+bn+c[/tex]
[tex]8=a+b+c[/tex] [tex]........(i)[/tex]
For [tex]n=2[/tex];
[tex]16=4a+2b+c[/tex] [tex]........(ii)[/tex]
For [tex]n=3[/tex];
[tex]26=9a+3b+c[/tex] [tex]........(iii)[/tex]
Now,
Subtract equation [tex](i)[/tex] from [tex](ii)[/tex]
we get,
[tex]8=3a+b[/tex] [tex]........(iv)[/tex]
Subtract equation [tex](ii)[/tex] from [tex](iii)[/tex] we get,
[tex]10=5a+b[/tex] [tex]........(v)[/tex]
Subtract equation [tex](iv)[/tex] from [tex](v)[/tex] we get,
[tex]2=2a[/tex] (This is second difference mentioned above)
[tex]a=1[/tex]
Putting [tex]a=1[/tex] in [tex](iv)[/tex]
⇒[tex]b=5[/tex]
Now putting values of [tex]a[/tex] and [tex]b[/tex] in equation [tex](i)[/tex]
[tex]8=1+5+c[/tex]
[tex]c=2[/tex]
Now, putting values of [tex]a[/tex] , [tex]b[/tex] and [tex]c[/tex] in,
Quadratic sequence [tex]=an^2+bn+c[/tex]
we get,
[tex]nth[/tex] term rule [tex]=n^2+5n+2[/tex]
Hence, we can say that the [tex]nth[/tex] term rule of the quadratic sequence will be [tex]n^2+5n+2[/tex].
To know more about quadratic sequence click here
https://brainly.com/question/22412845
#SPJ3