Find the value of x and y and each labeled
angle.

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
The required values are ~
[tex]\fbox \colorbox{black}{ \colorbox{white}{x} \: \: \: \: \: \: \: \: \colorbox{white}{=} \: \: \: \: \: + \colorbox{white}{40 \degree}}[/tex]
[tex]\fbox \colorbox{black}{ \colorbox{white}{y} \: \: \: \: \: \: \: \: \colorbox{white}{=} \: \: \: \: \: + \colorbox{white}{80 \degree}}[/tex]
[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
From the given figure, we can infer that ~
(by linear pair)
now, let's solve for x ~
And, we can see that 2x = y (by alternate interior angle pair)
So, let's find the value of y ~
Answer:
x = 40
3x - 20 = 100
2x = 80
y = 80
2x - 15 = 65
Step-by-step explanation:
The angles 3x - 20 and 2x are a linear pair, so they are supplementary. Their measures has a sum of 180°.
Angles 2x and y are alternate interior angles, so they are congruent.
Once we find the value of x, we can find the measure of angle 2x - 15.
3x - 20 + 2x = 180
5x = 200
x = 40
3x - 20 = 3(40) - 20 = 120 - 20 = 100
2x = 2(40) = 80
y = x = 80
2x - 15 = 2(40) - 15 = 80 - 15 = 65