Respuesta :

[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]

The required values are ~

[tex]\fbox \colorbox{black}{ \colorbox{white}{x} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{40 \degree}}[/tex]

[tex]\fbox \colorbox{black}{ \colorbox{white}{y} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{80 \degree}}[/tex]

[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]

From the given figure, we can infer that ~

  • 3x - 20° + 2x = 180°

(by linear pair)

now, let's solve for x ~

  • [tex]5x - 20 \degree = 180 \degree[/tex]

  • [tex]5x = 180 \degree + 20 \degree[/tex]

  • [tex]5x = 200 \degree[/tex]

  • [tex]x = 200 \degree \div 5[/tex]

  • [tex]x = 40 \degree[/tex]

And, we can see that 2x = y (by alternate interior angle pair)

So, let's find the value of y ~

  • [tex]2x[/tex]

  • [tex]2 \times 40 \degree[/tex]

  • [tex]80 \degree[/tex]

Answer:

x = 40

3x - 20 = 100

2x = 80

y = 80

2x - 15 = 65

Step-by-step explanation:

The angles 3x - 20 and 2x are a linear pair, so they are supplementary. Their measures has a sum of 180°.

Angles 2x and y are alternate interior angles, so they are congruent.

Once we find the value of x, we can find the measure of angle 2x - 15.

3x - 20 + 2x = 180

5x = 200

x = 40

3x - 20 = 3(40) - 20 = 120 - 20 = 100

2x = 2(40) = 80

y = x = 80

2x - 15 = 2(40) - 15 = 80 - 15 = 65