Respuesta :
- (-15,3)
- (-9,8)
Distance:-
[tex]\\ \sf\longmapsto \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{(-9+15)^2+(8-3)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{(6)^2+(5)^2}[/tex]
[tex]\\ \sf\longmapsto \sqrt{36+25}[/tex]
[tex]\\ \sf\longmapsto \sqrt{61}[/tex]
[tex]\\ \sf\longmapsto 7.32units[/tex]
Given info:- Find the distance between the points (-15,3) and (-9,8).
Explanation:-
Distance formulae:
Distance = √{(x₂ - x₁)² + (y₂ - y₁)²}
Let's figure out the distance between two points A = (-15,3) and B = (-9,8).
From those points,
x₁ = -15
x₂ = -9
y₁ = 3
y₂ = 8
Using them in the formula,
Distance btw AB = √[{(-9 - (-15)}² + (8 - 3)²]
= √[(-9 + 15)² + (8 - 3)²]
= √[(6)² + (5)²]
= √[(6*6) + (5*5)]
= √[36 + 25]
= √[61] Units.
Therefore, the distance between A(-25,3) and B(-9,8) is √(61) units.