Respuesta :

  • (-15,3)
  • (-9,8)

Distance:-

[tex]\\ \sf\longmapsto \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]\\ \sf\longmapsto \sqrt{(-9+15)^2+(8-3)^2}[/tex]

[tex]\\ \sf\longmapsto \sqrt{(6)^2+(5)^2}[/tex]

[tex]\\ \sf\longmapsto \sqrt{36+25}[/tex]

[tex]\\ \sf\longmapsto \sqrt{61}[/tex]

[tex]\\ \sf\longmapsto 7.32units[/tex]

Given info:- Find the distance between the points (-15,3) and (-9,8).

Explanation:-

Distance formulae:

Distance = √{(x₂ - x₁)² + (y₂ - y₁)²}

Let's figure out the distance between two points A = (-15,3) and B = (-9,8).

From those points,

x₁ = -15

x₂ = -9

y₁ = 3

y₂ = 8

Using them in the formula,

Distance btw AB = √[{(-9 - (-15)}² + (8 - 3)²]

= √[(-9 + 15)² + (8 - 3)²]

= √[(6)² + (5)²]

= √[(6*6) + (5*5)]

= √[36 + 25]

= √[61] Units.

Therefore, the distance between A(-25,3) and B(-9,8) is √(61) units.