In the diagram below, \overline{ST} ST is parallel to \overline{PQ} PQ. If STST is 55 more than QTQT, RT=10RT=10, and PQ=15PQ=15, find the length of \overline{QT} QT. Figures are not necessarily drawn to scale. State your answer in simplest radical form, if necessary.PQRTS

In the diagram below overlineST ST is parallel to overlinePQ PQ If STST is 55 more than QTQT RT10RT10 and PQ15PQ15 find the length of overlineQT QT Figures are class=

Respuesta :

The length of the [tex]\overline{QT}[/tex] can be determined using the given information and

the relationship between corresponding sides of similar triangles.

  • [tex]\underline{\overline{QT} = 5}[/tex]

Reasons:

The given parameters are;

[tex]\overline{ST} \parallel \overline{PQ}[/tex]

ST = QT + 5

RT = 10

PQ = 15

Required: The length of [tex]\overline{QT}[/tex]

Solution:

Using the relationship between corresponding sides of similar triangles, ΔRST and ΔRPQ, we have;

  • [tex]\displaystyle \frac{\overline{ST}}{\overline{RT}} = \mathbf{\frac{\overline{PQ}}{\overline{RQ}}}[/tex]

RQ = QT + RT

Therefore;

  • [tex]\displaystyle \frac{\overline{ST}}{\overline{RT}} = \mathbf{\frac{\overline{PQ}}{\overline{QT} + \overline{RT}}}[/tex]

Which gives;

[tex]\displaystyle \frac{\overline{QT} + 5}{\overline{RT}} = \frac{\overline{PQ}}{\overline{QT} + \overline{RT}}[/tex]

Plugging in the known values gives;

[tex]\displaystyle \frac{\overline{QT} + 5}{10} = \mathbf{\frac{15}{\overline{QT} + 10}}[/tex]

[tex](\overline{QT} + 5) \times (\overline{QT} + 10) = 10 \times 15[/tex]

[tex]\overline{QT}^2 + 10\cdot \overline{QT} + 5\cdot \overline{QT} + 50 = 10 \times 15[/tex]

[tex]\overline{QT}^2 + 15\cdot \overline{QT} + 50 - 150= 0[/tex]

[tex]\mathbf{\overline{QT}^2 + 15\cdot \overline{QT} -100} = 0[/tex]

Factorizing with a graphing calculator gives;

[tex](\overline{QT} -5) \cdot (\overline{QT} + 20)= 0[/tex]

[tex]\mathbf{\overline{QT} = 5} \ or \ \overline{QT} = -20[/tex]

Therefore, given that [tex]\overline{QT}[/tex] is a natural number, we have;

[tex]\underline{\overline{QT} = 5}[/tex]

Learn more about similar triangles here:

https://brainly.com/question/4268470