Respuesta :

Answer:

The equation of a tangent line is y = 4x-7

Step-by-step explanation:

We are given our quadratic function:-

[tex] \displaystyle \large{f(x) = {x}^{2} - 3}[/tex]

Since we want to find a line that is tangent to the parabola, let's recall our basic differential.

Differential (Power/Exponent)

[tex] \displaystyle \large{f(x) = a {x}^{n} \longrightarrow f'(x) = na {x}^{n - 1} }[/tex]

Differential (Constant)

[tex] \displaystyle \large{f(x) = a \longrightarrow f'(x) = 0}[/tex]

For a = constant.

First, differentiate the function.

[tex] \displaystyle \large{f(x) = {x}^{2} - 3} \\ \displaystyle \large{f'(x) = 2{x}^{2 - 1} - 0} \\ \displaystyle \large{f'(x) = 2x}[/tex]

Then substitute x = 2 in f'(x) to find the slope at x = 2 for parabola.

[tex] \displaystyle \large{f'(2)= 2(2)} \\ \displaystyle \large{f'(2)= 4}[/tex]

Therefore, slope at x = 2 is 4.

Form a point-slope equation:-

Point-Slope (Derivative)

[tex] \displaystyle \large{f(x) - f(a) = f'(a)(x - a)}[/tex]

Let a = x = 2

To find f(a), substitute x = a = 2 in x^2-3.

[tex] \displaystyle \large{f(2) = {2}^{2} - 3} \\ \displaystyle \large{f(2) = 4- 3} \\ \displaystyle \large{f(2) = 1}[/tex]

Therefore our f(a) is 1.

We know:-

  • f(a) = 1
  • a = 2
  • f'(a) = 4

Therefore the tangent equation is:-

[tex] \displaystyle \large{f(x) - 1 = 4(x - 2)} \\ \displaystyle \large{f(x) = 4(x - 2) + 1} \\ \displaystyle \large{f(x) = 4x - 8 + 1} \\ \displaystyle \large{f(x) = 4x - 7}[/tex]