Respuesta :

Step-by-step explanation:

[tex] \dashrightarrow\sf{({2}^{3} \times 2)}^{2} [/tex]

Using law of exponent [tex]{\bf{{a}^{m} \times {a}^{n} = {a}^{m + n}}}[/tex]

[tex] \dashrightarrow\sf{({2}^{3} \times {2}^{1})}^{2} [/tex]

[tex] \dashrightarrow\sf{({2}^{3+1})}^{2} [/tex]

[tex] \dashrightarrow\sf{({2}^{4})}^{2} [/tex]

Again, using law of exponent [tex]{\bf{({a}^{m})^{n} = {a}^{mn}}}[/tex]

[tex] \dashrightarrow\sf{({2}^{4})}^{2} [/tex]

[tex] \dashrightarrow\sf{({2})^{4 \times 2}} [/tex]

[tex] \dashrightarrow\sf{({2})^{8}} [/tex]

[tex]{\bigstar \: {\small\underline{\boxed{\sf{\red{Answer = (2)^8}}}}}}[/tex]

∴ The option (c) 2⁸ is the ur correct answer.

[tex]\underline{\rule{200pt}{2.5pt}}[/tex]

Answer:

(c) 2^8

Step-by-step explanation:

Given: (2^3 × 2)^2

Rewrite: (2³ x 2)²

Cube: (8 x 2)²

Multiply: (16)²

Square: 256

(a) 2^6

[tex]2^{6}[/tex] = 64 -> Not our answer

(b) 2^3

We can tell this isn't our answer as it is smaller than a, and a was too small

(c) 2^8

[tex]2^{8}[/tex] = 256 -> 256 = 256 (from above) so this is our answer

(d) All of the above.​

Incorrect, it won't be "all the options" as only one can be correct in this scenario