HLEP THIS IS DUE IN LIKE 30 MINUTES

Write an equation in point-slope form? Justify your answer.

1 - (1, 6) and (2, 3) are on the line.

2 - (-1, 1) and (1, -1) are on the line.

Respuesta :

Answer:

1) [tex]\mathsf{ y+3x-9=0}}[/tex]

2) [tex]\mathsf{ y+x=0}}[/tex]

Step-by-step explanation:

The eqn. of a line passing thru two given points, (x₁, y₁) and (x₂, y₂):

[tex]\boxed{\mathsf{(y-y_1)=\frac{y_2-y_1}{x_2-x_1} (x-x_1)}}[/tex]

#1-

The given points are (1, 6) and (2, 3), take any one of them as (x₁, y₁), but remember your choice for the eqn. changes if you make a mistake.

I'll be substituting (1, 6) in place of (x₁, y₁)

[tex]\mathsf{\implies (y-6)=\frac{3-6}{2-1} (x-1)}[/tex]

[tex]\mathsf{\implies (y-6)=\frac{-3}{1} (x-1)}[/tex]

[tex]\mathsf{\implies (y-6)=-3(x-1)}[/tex]

[tex]\mathsf{\implies y-6=-3x+3}[/tex]

Taking all of them to the left side (signs get reversed in doing so):

[tex]\mathsf{\implies y-6+3x-3=0}[/tex]

Operating on like terms:

[tex]\mathsf{\implies y+3x-(6+3)=0}[/tex]

[tex]\mathsf{\underline{\implies y+3x-9=0}}[/tex]

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

JUSTIFICATION:

(1, 6) lies on the line y + 3x - 9 =0, so it must satisfy it's equation:

Substituting x and y with 1 and 6 respectively:

=> 6 + 3(1) - 9 = 0

=> 6 + 3 - 9 = 0

=> 9 - 9 = 0

=> 0 = 0

True! Hence, the point (1, 6) lies on the line y + 3x - 9 = 0

                                                                   

#2-

The given points are:

  • (-1, 1)
  • (1, -1)

Substituting (-1, 1) in place of (x₁, y₁):

[tex]\mathsf{\implies (y-1)=\frac{[-1]-1}{1-[-1]} (x-[-1])}[/tex]

two negative signs when placed together make a positive:

[tex]\mathsf{\implies (y-1)=\frac{-1-1}{1+1} (x+1)}[/tex]

[tex]\mathsf{\implies (y-1)=\frac{-2}{2} (x+1)}[/tex]

[tex]\mathsf{\implies (y-1)=-1 (x+1)}[/tex]

[tex]\mathsf{\implies y-1=-1 x-1}[/tex]

Taking all the terms to the left (signs get reversed):

[tex]\mathsf{\implies y \:\overline{-1+1}+x=0}[/tex]

canceling (-1) and (+1):

[tex]\mathsf{\underline{\implies y+x=0}}[/tex]

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

JUSTIFICATION:

(-1, 1) lies on the line y + x =0, so it must satisfy it's equation:

Substituting x and y with -1 and 1 respectively:

=> -1 + 1 = 0

=> 0 = 0

True! Hence, the point (-1, 1) lies on the line y + x = 0