Respuesta :

The statements and reasons why the given statements are true are presented in the following two column proofs;

Question 1

Given: 9·(x + 6) - 41 = 75

[tex]Prove \ x = \dfrac{62}{9}[/tex]

Statement                   [tex]{}[/tex] Reason

S1. 9·(x + 6) - 41 = 75   [tex]{}[/tex]  R1. Given

S2. 9·(x + 6)  =  116        [tex]{}[/tex]R2. Addition property

S3. 9·x + 54 = 116         [tex]{}[/tex]R3. Distributive property

S4. 9·x = 62                   [tex]{}[/tex]R4. Subtraction property

S5. [tex]x = \dfrac{62}{9}[/tex]                     [tex]{}[/tex] R5. Division property of equality

Question 2.

Statement                                     [tex]{}[/tex]        Reason

S1. m∠A + m∠B = m∠D   [tex]{}[/tex]                     R1.  Given

S2. ∠C and ∠D form a Linear Pair   [tex]{}[/tex]   R2. Definition of linear pair

S3. ∠C and ∠D are supplementary   [tex]{}[/tex]R3. Linear pair ∠s are supplementary

S4. ∠C + ∠D = 180°  [tex]{}[/tex]                           R4. Definition of supplementary

S5. m∠C + m∠A + m∠B = 180°   [tex]{}[/tex]         R5. Substitution property

Question 3.

Statement                                     [tex]{}[/tex] Reason

S1. ∠BDA ≅ ∠A                             [tex]{}[/tex] R1. Given

S2. ∠BDA ≅ ∠CDE                      [tex]{}[/tex]  R2. Vertical angle theorem

S3. ∠CDE ≅ ∠A                      [tex]{}[/tex]       R3. Transitive property of congruency

S4. m∠CDE = m∠A                    [tex]{}[/tex]   R4. Definition of congruency

S5. (13·x + 20)° = (14·x + 15)°      [tex]{}[/tex]   R5. Substitution Property of Equality

S6. 14·x° = 13·x + 5°                       [tex]{}[/tex]R6. Subtraction property

S7. x = 5                      [tex]{}[/tex]                  R7. Subtraction property

Learn more here:

https://brainly.com/question/11331230