Respuesta :

Compute the derivative, dy/dx (use the chain rule):

y = 10/(1 + e ⁻ˣ) = 10 (1 + e ⁻ˣ)⁻¹

===>   dy/dx = -10 (1 + e ⁻ˣ)⁻² (-e ⁻ˣ) = 10e ⁻ˣ/(1 + e ⁻ˣ)²

Evaluate the derivative for x = 0 to get the slope of the tangent to the curve at (0, 5) :

dy/dx (0) = 10e ⁰/(1 + e ⁰)² = 10/(1 + 1)² = 10/4 = 5/2

Use the point-slope formula to get the equation of the tangent line:

y - 5 = 5/2 (x - 0)

===>   y = 5/2 x + 5