csc^2 (x) - 2csc(x) * cot(x) + cot^2 (x) = tan^2 (x/2) simplify

Answer:
x = 0
Simplify — x/ 2
x ((((cs•(c2))•x)-2c3sx2ot)+((co•(t2))•x))-((ta•(n2))•—) = 0 2
xtan2 ((((cs•(c2))•x)-2c3sx2ot)+((co•(t2))•x))
Equivalent Fraction:
Rewrite the whole as a fraction using 2 as the denominator :
-2c3sx2ot + c3sx + cxot2 (-2c3sx2ot + c3sx + cxot2) • 2 -2c3sx2ot + c3sx + cxot2 = 0