Consider the figure below where MN is parallel to PQ, angle PTS is equal to (19x +5) and angle NST is equal to (17x +15), determine angle MSR and angle STQ

Consider the figure below where MN is parallel to PQ angle PTS is equal to 19x 5 and angle NST is equal to 17x 15 determine angle MSR and angle STQ class=

Respuesta :

From the figure shown where MN is parallel to PQ:

m<MSR   =  100°

m<STQ   =  80°

By carefully observing the figure shown:

<MSR is vertically opposite to <NST

Vertically opposite angles are equal

m<NST  =  (17x  +  15)

<NST is alternative to <PTS

Alternative angles are equal

Therefore, m<NST  =  m<PTS

m<NST = 17x + 15

m<PTS  =  19x + 5

17x  +  15   =  19x  +  5

19x  -  17x =  15  -  5

2x   =  10

x   =  10/2

x   =  5

m<NST  =  17x + 15

m<NST  =  17(5)  +  15

m<NST  =  100°

Since m<MSR  =  m<NST

m<MSR   =  100°

m<PTS  =  19x + 5

m<PTS  =  19(5)  +  5

m<PTS  =  100°

m<PTS  +  m<STQ  =  180° (Sum of angles on a straight line)

100   +  m<STQ   =  180

m<STQ   =  180 - 100

m<STQ   =  80°

From the figure shown where MN is parallel to PQ:

m<MSR   =  100°

m<STQ   =  80°

Learn more here: https://brainly.com/question/25022812