Question is attached.
Step by step explanation only!

Answer:
See Below.
Step-by-step explanation:
We want to verify the equation:
[tex]\displaystyle \frac{\tan\theta}{ 1- \cot \theta} + \frac{\cot\theta}{1 - \tan\theta} = \frac{\dfrac{\sin\theta}{\cos\theta}}{1 - \dfrac{\cos\theta}{\sin\theta}} + \frac{\dfrac{\cos\theta}{\sin\theta}}{1 - \dfrac{\sin\theta}{\cos\theta}}[/tex]
Recall that tanθ = sinθ / cosθ. Likewise, cotθ = cosθ / sinθ. Then by substitution:
[tex]\displaystyle \begin{aligned} \frac{\tan\theta}{ 1- \cot \theta} + \frac{\cot\theta}{1 - \tan\theta} & = \frac{\dfrac{\sin\theta}{\cos\theta}}{1 - \dfrac{\cos\theta}{\sin\theta}} + \frac{\dfrac{\cos\theta}{\sin\theta}}{1 - \dfrac{\sin\theta}{\cos\theta}} \\ \\ & \stackrel{\checkmark}{=} \frac{\dfrac{\sin\theta}{\cos\theta}}{1 - \dfrac{\cos\theta}{\sin\theta}} + \frac{\dfrac{\cos\theta}{\sin\theta}}{1 - \dfrac{\sin\theta}{\cos\theta}} \end{aligned}[/tex]
Hence verified.
Given :
To Do :-
Proof :-
We know that ,
On using above two in LHS ,
Hence proved !