Respuesta :

Answer:

Step-by-step explanation:

Correct option is

A

[0,1]

Given :

f(x)=  

(x−1)(3−x)

 

=  

−x  

2

+4x−3

 

=  

−x  

2

+4x−4+1

 

f(x)=  

1−(x−2)  

2

 

 

maximum value at f(x) will be '1'

when (x−2)=0

so, f  

max

=1

minimum when (x−2)  

2

=1

x−2=±1

x=3 or x=1

so, minimum =  

1−1

=0

so Range = [0,1]→ option 'A'