contestada

Which of the following describes the domain of the piecewise function g of x is equal to the piecewise function of the quantity x squared plus 2 times x end quantity over the quantity x squared plus x minus 2 end quantity for x is less than 2 and the function log in base 2 of the quantity x plus 2 end quantity for x is greater than or equal to 2 question mark

(–∞, ∞)
(–∞, 1) ∪ (1, ∞)
(–∞, –2) ∪ (–2, 1) ∪ (1, ∞)
(–∞, 1) ∪ (1, 2) ∪ (2, ∞)

Respuesta :

The domain of a function are the possible x-values. The domain of function g(x) is [tex](-\infty, \infty)[/tex]

Given

[tex]g(x) = \left[\begin{array}{ccc}\frac{x^2 +2x }{x^2 + x - 2}&, \ x<2\\\log_2(x + 2) &x \ge 2\end{array}\right[/tex]

From the function, the possible values of x are:

[tex]x < 2[/tex] and [tex]x \ge 2[/tex]

[tex]x < 2[/tex] means that the values of x are [tex](-\infty, 2)[/tex]

[tex]x \ge 2[/tex] mean that the values of x are [tex][2, \infty)[/tex]

These values can be combined as follows:

[tex](-\infty, 2) + [2, \infty) = (-\infty, \infty)[/tex]

Hence, the domain of the function is: [tex](-\infty, \infty)[/tex]

Read more about domains at:

https://brainly.com/question/1632425