4. Figure I shows a logo comprised of a rhombus surrounded by two arcs.
Arc BAD has centre and arc BCD has centre 4. Some of the
dimensions of the logo are shown in the diagram.
Figure 1
4
+
Prove that the shaded area of the logo is (163-24,5)
8 marks

4 Figure I shows a logo comprised of a rhombus surrounded by two arcs Arc BAD has centre and arc BCD has centre 4 Some of the dimensions of the logo are shown i class=

Respuesta :

The area of a region is the amount of space the region occupies.

The area of the shaded region is [tex]\frac{2}{3}(16\pi - 24\sqrt3)[/tex]

First, we calculate the measure of [tex]\angle BCQ[/tex] using cosine ratio

[tex]\cos(\angle BCQ) = \frac{QC}{CB}[/tex]

Where:

[tex]CB = BA = 4cm[/tex]

[tex]QC = \frac 12 \times AC = \frac 12 \times 4cm = 2cm[/tex]

So, we have:

[tex]\cos(\angle BCQ) = \frac{2cm}{4cm}[/tex]

[tex]\cos(\angle BCQ) = \frac{1}{2}[/tex]

Take arc cos of both sides

[tex]\angle BCQ = \cos^{-1}(\frac{1}{2})[/tex]

[tex]\angle BCQ = 60^o[/tex]

Convert to radians

[tex]\angle BCQ = 60 \times \frac{\pi}{180}[/tex]

[tex]\angle BCQ = \frac{\pi}{3}[/tex]

Calculate the measure of [tex]\angle BCD[/tex]

[tex]\angle BCD = 2 \times \angle BCQ[/tex]

[tex]\angle BCD = 2 \times \frac{\pi}{3}[/tex]

[tex]\angle BCD = \frac{2\pi}{3}[/tex]

Calculate the area of sector BCD using:

[tex]Area = \frac 12 r^2 \theta[/tex]

So, we have:

[tex]A_1 = \frac 12 \times 4^2 \times \frac{2\pi}{3}[/tex]

[tex]A_1 = 16 \times \frac{\pi}{3}[/tex]

[tex]A_1 = \frac{16\pi}{3}[/tex]

Calculate the area of the complete sector

[tex]Area = 2 \times A_1[/tex]

[tex]Area =2 \times \frac{16\pi}{3}[/tex]

[tex]Area =\frac{32\pi}{3}[/tex]

Next, calculate the area of the rhombus

First, calculate side length QB using Pythagoras theorem

[tex]BC^2 = QB^2 + QC^2[/tex]

[tex]2^2 = QB^2+ 4^2[/tex]

[tex]4 = QB^2 + 16[/tex]

Collect like terms

[tex]QB^2 = 16 - 4[/tex]

[tex]QB^2 = 12[/tex]

Take square roots

[tex]QB = \sqrt{12[/tex]

Multiply by 2 to calculate side length DB

[tex]DB = 2 \times \sqrt{12[/tex]

Expand

[tex]DB = 2 \times \sqrt{4 \times 3[/tex]

Split

[tex]DB = 2 \times \sqrt{4} \times \sqrt{3[/tex]

[tex]DB = 2 \times 2 \times \sqrt{3[/tex]

[tex]DB = 4\sqrt{3[/tex]

So, the area of the rhombus is:

[tex]Area = DB \times AC[/tex]

[tex]Area = 4\sqrt3 \times 4[/tex]

[tex]Area = 16\sqrt3[/tex]

The area of the shaded region is the area of the rhombus subtracted from the area of the complete sector

[tex]Area =\frac{32\pi}{3}[/tex] ---- Sector

[tex]Area = 16\sqrt3[/tex] ---- Rhombus

So, we have:

[tex]A = \frac{32\pi}{3}- 16\sqrt3[/tex]

Take square roots

[tex]A = \frac{32\pi - 48\sqrt3}{3}[/tex]

Factor out 2

[tex]A = \frac{2(16\pi - 24\sqrt3)}{3}[/tex]

Rewrite as:

[tex]A = \frac{2}{3}(16\pi - 24\sqrt3)[/tex]

Hence, the area of the shaded region has been proven to be[tex]\frac{2}{3}(16\pi - 24\sqrt3)[/tex]

Read more about areas at:

https://brainly.com/question/16418397