Answer:
[tex]\textsf{the sum is }F_{n+2}-1[/tex]
Step-by-step explanation:
The given statement is FALSE.
Consider ...
[tex]F_{n+2}=F_{n+1}+F_n\\\\F_n=F_{n+2}-F_{n+1}\\\\\displaystyle \sum_{i=1}^n{F_i}=\sum_{i=1}^n{F_{i+2}}-\sum_{i=1}^n{F_{i+1}}=F_{n+2}+\sum_{i=3}^{n+1}(F_i-F_i)-F_2\\\\\sum_{i=1}^n{F_i}=F_{n+2}-F_2 =\boxed{F_{n+2}-1}[/tex]