The value of the fixed cost is the product of the average cost function and the quantity.
Given:
[tex]AC = \frac{800}{Q} + 2Q + 18[/tex]
Lowest value of Q
[tex]AC = \frac{800}{Q} + 2Q + 18[/tex]
Differentiate the average cost function
[tex]AC' = -800Q^{-2} + 2[/tex]
Equate to 0
[tex]-800Q^{-2} + 2 =0[/tex]
Collect like terms
[tex]- 800Q^{-2} =-2[/tex]
Rewrite as:
[tex]-\frac{800}{Q^2} = -2[/tex]
Solve for [tex]Q^2[/tex]
[tex]Q^2 = -\frac{800}{-2}[/tex]
[tex]Q^2 = 400[/tex]
Take square roots of both sides
[tex]Q= 20[/tex]
Fixed Cost
The fixed cost (FC) is: [tex]FC = AC \times Q[/tex]
So, we have:
[tex]FC = (\frac{800}{Q} + 2Q + 18) \times Q[/tex]
Substitute 20 for Q
[tex]FC = (\frac{800}{20} + 2\times 20 + 18) \times 20[/tex]
[tex]FC = (40 + 40 + 18) \times 20[/tex]
[tex]FC = 98 \times 20[/tex]
[tex]FC = 1960[/tex]
Hence, the value of the fixed cost is 1960
Read more about fixed and average costs at:
https://brainly.com/question/15279689