Respuesta :

Answer:

I answered your last question also

2 log3x – 2 logx3 -3 <0

[tex]\mathrm{Subtract\:}2\log ^3\left(x\right)\mathrm{\:from\:both\:sides}[/tex]

[tex]2\log ^3\left(x\right)-2logx^3-3-2\log ^3\left(x\right)<0-2\log ^3\left(x\right)[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]-2logx^3-3<-2\log ^3\left(x\right)[/tex]

[tex]\mathrm{Add\:}3\mathrm{\:to\:both\:sides}[/tex]

[tex]-2logx^3-3+3<-2\log ^3\left(x\right)+3[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]-2logx^3<-2\log ^3\left(x\right)+3[/tex]

[tex]Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)[/tex]

[tex]\left(-2logx^3\right)\left(-1\right)>-2\log ^3\left(x\right)\left(-1\right)+3\left(-1\right)[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]2lx^3og>2\log ^3\left(x\right)-3[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}2lx^3o;\quad \:l>0[/tex]

[tex]\frac{2lx^3og}{2lx^3o}>\frac{2\log ^3\left(x\right)}{2lx^3o}-\frac{3}{2lx^3o};\quad \:l>0\\[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]g>\frac{2\log ^3\left(x\right)-3}{2lx^3o};\quad \:l>0[/tex]

Step-by-step explanation: