Respuesta :

The choice

[tex] - \frac{14}{25} [/tex]

[tex] \frac{3 - 4i}{3 + 4i} + \frac{3 + 4i}{3 - 4i} \\ \\( \frac{3 - 4i}{3 + 4i} \times\frac{3 - 4i}{3 - 4i}) +( \frac{3 + 4i}{3 - 4i} \times \frac{3 + 4i}{3 + 4i}) \\ \\ \frac{ - 7 - 24i}{9 - 16 {i}^{2} } + \frac{ - 7 + 24i}{9 - 16 {i}^{2} } \\ \\ \frac{ - 7}{9 + 16} + \frac{ - 7}{9 + 16} \\ \\ \frac{ - 7}{25} + \frac{ - 7}{25} = \frac{ - 14}{25} [/tex]

I hope I helped you^_^

Remember i^2 = -1 so (4i)^2 = -16
Multiply the first fraction by (3 - 4i)/(3 - 4i) and the second fraction by (3 + 4i)/(3 + 4i)
= (3 - 4i)(3 - 4i)/(3 + 4i)(3 - 4i) + (3 + 4i)(3 + 4i)/(3 - 4i)(3 + 4i)
= (9 - 8i - 16)/(9 - -16) + (9 + 8i - 16)/(9 - -16)
= (-7 - 8i)/25 + (-7 + 8i)/25
= (-7 - 8i -7 + 8i)/25
= -14/25 which is the first option shown