Solve for x, given m<2 = 5x – 5

[tex]\\ \bull\tt\dashrightarrow 5x-5=74[/tex]
[tex]\\ \bull\tt\dashrightarrow 5x=74+5[/tex]
[tex]\\ \bull\tt\dashrightarrow 5x=79[/tex]
[tex]\\ \bull\tt\dashrightarrow x=\dfrac{79}{5}[/tex]
[tex]\\ \bull\tt\dashrightarrow x\approx 16[/tex]
Answer:
• These is an isosceles triangle, meaning base angles are equal.
• let the upper angle of the first triangle be y;
[tex]{ \tt{y + 74 \degree + 74 \degree = 180 \degree}} \\ \\ { \tt{y + 148 \degree = 180 \degree}} \\ \\ { \tt{y = 32 \degree}}[/tex]
• Therefore:
[tex]{ \tt{m \angle 2 + y = 90 \degree}} \\ \\ { \tt{(5x - 5) + 32 = 90}} \\ \\ { \tt{5x + 27 = 90 }} \\ \\ { \tt{5x = 63}} \\ \\ { \tt{x = \frac{63}{5} }} \\ \\ { \boxed{ \tt{ \: \: x = 12.6 \: \: }}}[/tex]