Respuesta :

Answer:  C)  -48x^7y^3

Explanation:

The coefficients are -8 and 6, which are to the left of the variable expressions. The coefficients multiply to -48. Based on this alone, the answer is between choice C or choice D.

For the variables, we add the exponents. The x terms multiply to x^5*x^2 = x^(5+2) = x^7

The y terms multiply to y^2*y = y^2*y^1 = y^(2+1) = y^3

Putting everything together, we end up with -48x^7y^3

[tex] \huge \boxed{\mathfrak{Question} \downarrow}[/tex]

  • Find the product of -8x⁵y² · 6x²y.

[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]

[tex] \sf \: - 8 x ^ { 5 } y ^ { 2 } \cdot 6 x ^ { 2 } y[/tex]

Use the rules of exponents to simplify the expression.

[tex] \sf\left(-8\right)^{1}x^{5}y^{2}\times 6^{1}x^{2}y^{1} [/tex]

Use the Commutative Property of Multiplication.

[tex] \sf\left(-8\right)^{1}\times 6^{1}x^{5}x^{2}y^{2}y^{1} [/tex]

To multiply powers of the same base, add their exponents.

[tex] \sf\left(-8\right)^{1}\times 6^{1}x^{5+2}y^{2+1} [/tex]

Add the exponents 5 and 2.

[tex] \sf\left(-8\right)^{1}\times 6^{1}x^{7}y^{2+1} [/tex]

Add the exponents 2 and 1.

[tex] \sf\left(-8\right)^{1}\times 6^{1}x^{7}y^{3} [/tex]

Multiply -8 times 6 to get -48.

[tex] \boxed{ \boxed{\bf \: C) \: -48x^{7}y^{3} }}[/tex]