The general equation of a parabola is [tex]y = a(x-h)^2 + k[/tex].
- The function g(x) that models the hammock's netting is [tex]g(x) = \frac{1}{25}(x - 3)^2 + 3[/tex].
- The domain of g(x) is [tex]\{-2 \le x \le 8 \}[/tex]
Equation that models the netting
From the graph, we have:
[tex](h,k) = (3,3)[/tex] ---- the vertex
[tex](x_1,y_1) = (-2,4)[/tex] --- point A
[tex](x_2,y_2) = (8,4)[/tex] --- point C
Substitute [tex](h,k) = (3,3)[/tex] in [tex]y = a(x-h)^2 + k[/tex]
[tex]y =a(x - 3)^2 + 3[/tex]
At point A, we have: [tex](x_1,y_1) = (-2,4)[/tex]
So, the equation becomes
[tex]4 = a(-2 - 3)^2 + 3[/tex]
[tex]4 = a(-5)^2 + 3[/tex]
[tex]4 = 25a + 3[/tex]
Collect like terms
[tex]-3 + 4 = 25a[/tex]
[tex]1 =25a[/tex]
Divide both sides by 25
[tex]a = \frac 1{25}[/tex]
Substitute [tex]a = \frac 1{25}[/tex] in [tex]y =a(x - 3)^2 + 3[/tex]
[tex]y = \frac{1}{25}(x - 3)^2 + 3[/tex]
The domain
From the graph, the x value starts at -2 and ends at 8
This means that, the domain of the function is [tex]-2 \le x \le 8[/tex]
Read more about equations of parabola at:
https://brainly.com/question/4074088