Determine the number of subsets and list down all of them.
1. { a,b,c }
2.{ 2,4,6,8 }
3.{ 1,2,3,4,5,}
4.{d,e,f,g,h,i}​

Respuesta :

We have to use Powerset .All of the elements are subsets of the set.

  • If n(A)=n

[tex]\boxed{\sf P(A)=2^n}[/tex]

#1

  • {a,b,c}
  • It has 2^3=8subsets

Now

P(A)={{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

#2

  • {2,4,6,8}
  • It has 2^4=16 subsets

Now

P(A)={{2},{4},{6},{8},{2,4},{2,8},{2,8},{4,8},{4,6},{6,8},{2,4,6},{2,4,8},{2,6,8},{4,6,8},{2,4,6,8}}

#3

It has 2^5=32 subsets

Now

P(A)={{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{1,2,3},{1,2,4},{1,2,5}...{1,2,3,4,5}}

✏️ SUBSETS

[tex]\purple{\underline {\bold{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}}[/tex]

[tex] \bold \purple{PROBLEM:}[/tex]

  • Determine the number of subsets and list down all of them.

  • » 1. { a,b,c }
  • » 2.{ 2,4,6,8 }
  • » 3.{ 1,2,3,4,5,}
  • » 4.{d,e,f,g,h,i}

[tex]\bold \purple{FORMULA:}[/tex]

[tex] \underline{ \boxed{ \green{ \rm{ \wp = 2^{n}}}}}[/tex]

[tex]\bold \purple{ANSWER:}[/tex]

[tex]» \rm \: {1.) \: { a,b,c }}[/tex]

  • [tex]\rm{ \wp = 2^{3} = \green{\boxed{8}}}[/tex]

  • {},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}

[tex]» \rm \: {2.)\: { 2,4,6,8 }}[/tex]

  • [tex]\rm{ \wp = 2^{4} = \green{\boxed{16}}}[/tex]

  • {},{2},{4},{6},{8},{2,4},{2,8},{2,8},{4,8},{4,6},{6,8},{2,4,6},{2,4,8},{2,6,8},{4,6,8},{2,4,6,8}

[tex]» \rm \: {3. )\: { 1,2,3,4,5 }}[/tex]

  • [tex] \rm{ \wp = 2^{5} = \green{\boxed{32}}}[/tex]

  • {1},{2},{3},{4,}{5},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{1,2,3,4,5},{2,3},{2,4},{2,5},{2,3,4},{2,3,5},{2,4,5},{2,3,4,5},{3,4}{3,5}{3,4,5}{4,5},{1,2,3,4,5}.

[tex]» \rm \: {4. )\: { d,e,f,g,h,i }}[/tex]

  • [tex]\rm{ \wp = 2^{6} = \green{\boxed{64}}}[/tex]

  • {d},{e},{f},{g},{h},{i},{d,e},{d,f},{d,g},{d,h},{d,i},{ e,f },{ e,g },{ e,h },{ e,i },{ f,g },{f,h },{ f,i },{ g,h},{ g,i },{ h,i },{ d,e,f },{ d,e,g },{d,e,h },{ d,e,i },{ d,f,g },{ d,f,h },{ d,f,i },{d,g,h },{ d,g,i },{ d,h,i },{ e,f,g },{ e,f,h },{e,f,i },{e,g,h },{ e,g,i },{ e,h,i },{ f,g,h },{ f,g,i },{g,h,i },{d,e,f,g },{d,e,f,h},{ d,e,f,i },{ d,f,g,h },{d,f,g,i},{d,g,h,i},{e,f,g,h},{e,f,g,i},{f,g,h,i},{d,e,f,g,h},{d,e,f,g,i},{e,f,g,h,i},{d,e,f,g,h,i}.

[tex]\purple{\underline {\bold{\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }}}[/tex]

\(^.^\)