Formulating a linear optimization problem involves minimizing or maximizing an objective function.
The linear optimization problem is:
Max [tex]z= 300x + 500y[/tex]
Subject to:
[tex]\frac{x}{800} + \frac{y}{700} \le 1[/tex]
[tex]\frac{x}{1500} + \frac{y}{1200} \le 1[/tex]
[tex]x,y \ge 0[/tex]
Let:
[tex]x \to[/tex] Type 1
[tex]y \to[/tex] Type 2
Painting shop
We have:
[tex]x= 800[/tex]
[tex]y = 700[/tex]
The total number of type 1 and type 2 trucks that can be painted is not given. This means that; we represent this constraint using proportions.
So, we have:
[tex]\frac{x}{800} + \frac{y}{700} \le 1[/tex]
Assembly shop
We have:
[tex]x =1500[/tex]
[tex]y = 1200[/tex]
Using proportions, we have:
[tex]\frac{x}{1500} + \frac{y}{1200} \le 1[/tex]
Profit contributed
We have:
[tex]x = 300[/tex]
[tex]y = 500[/tex]
So, the objective function is:
[tex]z= 300x + 500y[/tex]
Hence, the linear optimization problem is:
Max [tex]z= 300x + 500y[/tex]
Subject to:
[tex]\frac{x}{800} + \frac{y}{700} \le 1[/tex]
[tex]\frac{x}{1500} + \frac{y}{1200} \le 1[/tex]
[tex]x,y \ge 0[/tex]
Read more about linear optimization problems at:
https://brainly.com/question/16103572