Respuesta :
The price elasticity of demand is the change in quantity demanded relative to the change in price.
- The second figure in the attached image represents the revenue graph
- The price elasticity of demand is 0.143
- The demand must be inelastic
Let:
[tex]P \to Price\\Q \to Quantity[/tex]
(a) The total revenue
From the first graph (see attachment), we have:
[tex](P_1,Q_1) = (50,90)[/tex]
[tex](P_2,Q_2) = (75,81)[/tex]
[tex](P_3,Q_3) = (100,72)[/tex]
[tex](P_4,Q_4) = (125,63)[/tex]
[tex](P_5,Q_5) = (150,54)[/tex]
[tex](P_6,Q_6) = (175,45)[/tex]
[tex](P_7,Q_7) = (200,36)[/tex]
The total revenue (T) is calculated using:
[tex]T = P \times Q[/tex]
So, we have:
[tex]T_1 = 50 \times 90 = 4500[/tex]
[tex]T_2 = 75 \times 81 = 6075[/tex]
[tex]T_3 = 100 \times 72 = 7200[/tex]
[tex]T_4 = 125 \times 63 = 7875[/tex]
[tex]T_5 = 150 \times 54 = 8100[/tex]
[tex]T_6 = 175 \times 45 = 7875[/tex]
[tex]T_7 = 200 \times 36 = 7200[/tex]
The second figure in the attached image represents the revenue graph
(b) Price elasticity of demand
Between points A and B, we have:
[tex](P_1,Q_1) = (50,90)[/tex]
[tex](P_2,Q_2) = (25,99)[/tex]
The price elasticity of demand is:
[tex]E_d = \frac{(Q_2 - Q_1)/(Q_1 + Q_2)/2}{(P_2 - P_1)/(P_1 + P_2)/2}[/tex]
So, we have:
[tex]E_d = \frac{(Q_2 - Q_1)/(Q_1 + Q_2)}{(P_2 - P_1)/(P_1 + P_2)}[/tex]
[tex]E_d = \frac{(99 - 90)/(90 + 99)}{(25 - 50)/(50 + 25)}[/tex]
[tex]E_d = \frac{9/189}{-25/75}[/tex]
[tex]E_d = -0.143[/tex]
The price elasticity of demand between points A and B is 0.143, and the demand must be inelastic because an increase in price of the bike leads to a decrease in the total revenue
Read more about price elasticity of demand at:
https://brainly.com/question/13380594
