Answer:
126°
Step-by-step explanation:
In quadrilateral DSRC, SR || DC (given)
AP = BQ = CR = DS = ET (given)
[tex] \therefore [/tex] CR bisects [tex] \angle DCB[/tex]
[tex] \therefore m\angle DCR=\frac{108\degree}{2} [/tex]
([tex] 108\degree[/tex] is the measure of an angle of pentagon)
[tex] \therefore m\angle DCR=54\degree[/tex]
[tex] \because m\angle DCR + m\angle SRC=180\degree [/tex]
(Measure of interior angles on the same side of transversal)
[tex] \therefore 54\degree + m\angle SRC=180\degree [/tex]
[tex] \therefore m\angle SRC=180\degree- 54\degree[/tex]
[tex] \therefore m\angle SRC=126\degree[/tex]