Find the perimeter of the polygon with the given vertices. Round your answer to the nearest hundredth.
Ay
F(-2,4) AO, 4)
N
E-2, 2)
B(2,0)
4 x
-4 -2
D(0, -2)
-C(2,-2)
The perimeter is about how many
units.

Find the perimeter of the polygon with the given vertices Round your answer to the nearest hundredth Ay F24 AO 4 N E2 2 B20 4 x 4 2 D0 2 C22 The perimeter is ab class=

Respuesta :

Perimeter of the given polygon is 16.94 units.

To measure the distance between two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by the ex[pression,

Distance = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

By using this expression,

Distance between A(0, 4) and B(2, 0) = [tex]\sqrt{(0-2)^2+(4-0)^2}[/tex]

                                                              = [tex]\sqrt{20}[/tex] units

Distance between B(2, 0) and C(2, -2) = [tex]\sqrt{(2-2)^2+(0+2)^2}[/tex]

                                                               = 2 units

Distance between C(2, -2) and D(0, -2) = [tex]\sqrt{(0-2)^2+(-2+2)^2}[/tex]

                                                                 = 2 units

Distance between D(0 -2) and E(-2, 2) = [tex]\sqrt{(0+2)^2+(-2-2)^2}[/tex]

                                                                = [tex]\sqrt{20}[/tex] units

Distance between E(-2, 2) and F(-2, 4) = [tex]\sqrt{(-2+2)^2+(2-4)^2}[/tex]

                                                               = 2 units

Distance between F(-2, 4) and A(0, 4) = [tex]\sqrt{(-2-0)^2+(4-4)^2}[/tex]

                                                               = 2 units

Perimeter of ABCDEF = AB + BC + CD + DE + EF + FA

                                     = [tex]\sqrt{20}+2+2+\sqrt{20}+2+2[/tex]

                                     = [tex]8+2\sqrt{20}[/tex]

                                     = 16.94 units

      Therefore, perimeter of the given polygon in the graph attached is 16.94 units.

Learn more,

https://brainly.com/question/17248544