Respuesta :

ANSWER

My answer is in the photo above

Ver imagen jerex2006

Answer:

[tex] \displaystyle \large{x \leqslant 15}[/tex]

Step-by-step explanation:

We are given the Inequality:

[tex] \displaystyle \large{2x + 12 \leqslant 42}[/tex]

To solve an Inequality, solve it like an equation: We isolate x-term.

First, subtract 12 both sides.

[tex] \displaystyle \large{2x + 12 - 12 \leqslant 42 - 12} \\ \displaystyle \large{2x \leqslant 30}[/tex]

Then divide both sides by 2.

[tex] \displaystyle \large{ \frac{2x}{2} \leqslant \frac{30}{2} }[/tex]

Divide the like term. 2 divides 2 = 1; 2 divides 30 = 15.

[tex] \displaystyle \large{ \frac{ \cancel{2}x}{ \cancel{2}} \leqslant \frac{ \cancel{30}}{ \cancel{2}} } \\ \displaystyle \large{ \frac{ 1x}{ 1} \leqslant \frac{15}{1} }[/tex]

Generally, we do not recommend writing 1 as a denominator as we would just cancel 1 anyways.

That goes the same to 1x which we can simplify to x.

[tex] \displaystyle \large \boxed{ x \leqslant 15}[/tex]

Let me know if you have any questions!