What is the force of gravity between Earth (mass = 6.0 × 1024 kilograms) and Jupiter (mass = 1.901 × 1027 kilograms)? The distance between the two planets is about 7.5 × 1011 meters.
2.027 × 1017 newtons7.10 × 1017 newtons
1.352 × 1018 newtons
1.014 × 1019 newtons
1.54 × 1019 newtons
NextReset

Respuesta :

1.352 x 10^18 newtons

Answer:

1.352 × 1018 newtons

Explanation:

The force of gravity between the two planets is given by:

[tex]F=G\frac{m_1 m_2}{r^2}[/tex]

where

[tex]G=6.67\cdot 10^{-11} Nm^2 kg^{-2}[/tex] is the gravitational constant

[tex]m_1 = 6.0\cdot 10^{24} kg[/tex] is the mass of the Earth

[tex]m_2 = 1.901 \cdot 10^{27} kg[/tex] is the mass of Jupiter

[tex]r=7.5\cdot 10^{11} m[/tex] is the distance between the two planets

Substituting all the numbers into the equation, we find:

[tex]F=(6.67\cdot 10^{-11}) \frac{(6.0\cdot 10^{24})(1.901\cdot 10^{27})}{(7.5\cdot 10^{11})^2}=1.352\cdot 10^{18} N[/tex]