Respuesta :
a) p = Pr/[1-(1+i)^-n]
Assuming the interest compounds monthly
p = 175000(.01)/[1 - 1/(1.01)^240] = $1926.90
b) 240*1926.90 = $462,456
c) 175000/462456 = 37.84% is paid to principal and 100-37.84 = 62.16% is paid to interest.
Assuming the interest compounds monthly
p = 175000(.01)/[1 - 1/(1.01)^240] = $1926.90
b) 240*1926.90 = $462,456
c) 175000/462456 = 37.84% is paid to principal and 100-37.84 = 62.16% is paid to interest.
Answer:
The EMI formula is :
[tex]EMI=\frac{p\times r\times(1+r)^{n}}{(1+r)^{n}-1}[/tex]
Part 1.
p = 17500
r = [tex]12/12/100=0.01[/tex]
n = [tex]12\times20=240[/tex]
Putting values in formula we get
[tex]\frac{17500\times0.01\times(1+0.01)^{240}}{(1+0.01)^{240}-1}[/tex]
=> [tex]\frac{17500\times0.01\times(1.01)^{240}}{(1.01)^{240}-1}[/tex]
= $192.69
Part 2.
p = 25000
r = [tex]6/12/100=0.005[/tex]
n = [tex]12\times15=180[/tex]
Putting values in formula we get
[tex]\frac{25000\times0.005\times(1+0.005)^{180}}{(1+0.005)^{180}-1}[/tex]
=> [tex]\frac{25000\times0.005\times(1.005)^{180}}{(1.005)^{180}-1}[/tex]
= $210.96
Part 3.
p = 225000
r = [tex]4.5/12/100=0.00375[/tex]
n = [tex]12\times20=240[/tex]
Putting values in formula we get
[tex]\frac{225000\times0.00375\times(1+0.00375)^{240}}{(1+0.00375)^{240}-1}[/tex]
=> [tex]\frac{225000\times0.00375\times(1.00375)^{240}}{(1.00375)^{240}-1}[/tex]
= $1423.46
Part 4.
p = 225000
r = [tex]6/12/100=0.005[/tex]
n = [tex]12\times30=360[/tex]
Putting values in formula we get
[tex]\frac{225000\times0.005\times(1+0.005)^{360}}{(1+0.005)^{360}-1}[/tex]
=> [tex]\frac{225000\times0.005\times(1.005)^{360}}{(1.005)^{360}-1}[/tex]
= $1348.98
Part 5.
p = 3000
r = [tex]21/12/100=0.0175[/tex]
n = 12
Putting values in formula we get
[tex]\frac{3000\times0.0175\times(1+0.0175)^{12}}{(1+0.0175)^{12}-1}[/tex]
=> [tex]\frac{3000\times0.0175\times(1.0175)^{12}}{(1.0175)^{12}-1}[/tex]
= $279.35
Part 6.
p = 4500
r = [tex]17/12/100=0.014166[/tex]
n = [tex]12\times3=36[/tex]
Putting values in formula we get
[tex]\frac{4500\times0.014166\times(1+0.014166)^{36}}{(1+0.014166)^{36}-1}[/tex]
=> [tex]\frac{4500\times0.014166\times(1.014166)^{36}}{(1.014166)^{36}-1}[/tex]
= $160.43