Respuesta :
Answer:
[tex]{(-1, -8), (0, -3), (3, 12)}[/tex]
Step-by-step explanation:
we have
[tex]y=5x-3[/tex]
we know that
If a set of ordered pairs represent possible inputs and outputs of the function
then
All ordered pairs of the set must be satisfy the function
case A) [tex]{(2, 5), (-3, -12), (-4, -18)}[/tex]
Substitute the value of x and y of each point in the function
Point 1 [tex](2, 5)[/tex]
[tex]5=5(2)-3[/tex]
[tex]5=7[/tex] -------> is not true
The set of case A does not represent possible inputs and outputs of the function
case B) [tex]{(-1, -8), (0, -3), (3, 12)}[/tex]
Substitute the value of x and y of each point in the function
Point 1 [tex](-1, -8)[/tex]
[tex]-8=5(-1)-3[/tex]
[tex]-8=-8[/tex] -------> is true
Point 2 [tex](0, -3)[/tex]
[tex]-3=5(0)-3[/tex]
[tex]-3=-3[/tex] -------> is true
Point 3 [tex](3, 12)[/tex]
[tex]12=5(3)-3[/tex]
[tex]12=12[/tex] -------> is true
The set of case B represents possible inputs and outputs of the function
case C) [tex]{(1, 4), (7, 25), (3, 10)}[/tex]
Substitute the value of x and y of each point in the function
Point 1 [tex](1,4)[/tex]
[tex]4=5(1)-3[/tex]
[tex]4=2[/tex] -------> is not true
The set of case C does not represent possible inputs and outputs of the function
case D) [tex]{(5, 20), (6, 12), (1, 9)}[/tex]
Substitute the value of x and y of each point in the function
Point 1 [tex](5,20)[/tex]
[tex]20=5(5)-3[/tex]
[tex]20=22[/tex] -------> is not true
The set of case D does not represent possible inputs and outputs of the function