A polynomial has two terms. Check all of the factoring methods that should be considered.
- common factor
- difference of cubes
- sum of cubes
- difference of squares
- perfect-square trinomial
- factoring by grouping

Respuesta :

A, B, C, and D,,,,,,,,,,,,
frika

Suppose that a polynomial has two terms. Consider following methods and polynomials for which these methods can be applied.

A. Common factor. For example, if a polynomial is of form

[tex]ax^n+bx^m,[/tex] where [tex]n>m,[/tex]  then you can factor it in the following way

[tex]ax^n+bx^m=x^m(ax^{n-m}+b).[/tex]

B. Difference of cubes.  For example, if a polynomial is of form

[tex]x^3-a^3,[/tex] then it can be factored as

[tex](x-a)(x^2+ax+a^2).[/tex]

C. Sum of cubes.  For example, if a polynomial is of form

[tex]x^3+a^3,[/tex] then it can be factored as

[tex](x+a)(x^2-ax+a^2).[/tex]

D. Difference of squares.  For example, if a polynomial is of form

[tex]x^2-a^2,[/tex] then it can be factored as

[tex](x-a)(x+a).[/tex]

E and F methods require more then two terms.

Answer: A, B, C and D