2x² - 5x+1 has roots alpha and beta. Find alpha⁴+beta⁴ without solving the equation.

Please answer fast step by step. I will mark the best answer as brainliest. ​

Respuesta :

caylus

Answer:

Step-by-step explanation:

[tex]\alpha+\beta=\dfrac{5}{2} \\\\\alpha*\beta=\dfrac{1}{2} \\\\\alpha^2+\beta^2=\dfrac{21}{4} \ (see\ previous\ post)\\\\(\alpha+\beta)^4=\dfrac{625}{16} \\\\=\alpha^4+\beta^4+4*\alpha^3*\beta+6*\alpha^2*\beta^2+4*\alpha*\beta^3\\\\=\alpha^4+\beta^4+4*(\alpha*\beta)(\alpha^2+\beta^2)+6*\alpha^2*\beta^2\\\\\alpha^4+\beta^4=(\alpha+\beta)^4-4*(\alpha*\beta)(\alpha^2+\beta^2)-6*\alpha^2*\beta^2\\\\= \dfrac{625}{16} -4*\dfrac{1}{2} *\dfrac{21}{4} -6*(\dfrac{1}{2})^2 \\\\[/tex]

[tex]= \dfrac{625}{16}- \dfrac{168}{16}-\dfrac{24}{16}\\\\\\= \dfrac{433}{16}[/tex]